conic sections造句
例句與造句
- The platonic school's most significant discovery was the conic sections .
Plato學(xué)派的最重要發(fā)現(xiàn)是圓錐曲線。 - His chief work was on the conic sections but he also wrote on other subjects .
他的主要著作是關(guān)于圓錐線的,但也寫過其他方面的著作。 - Online freehand sketching recognition using primarily conic sections
基于二次曲線的在線手繪圖識別 - The intersection point of two conic sections
兩錐線的交點 - The platonic school ' s most significant discovery was the conic sections
Plato學(xué)派的最重要發(fā)現(xiàn)是圓錐曲線。 - It's difficult to find conic sections in a sentence. 用conic sections造句挺難的
- The demonstration of the conic section is an envelope of family of straight lines
圓錐曲線是直線族的包絡(luò)的證明 - On the uniform equation of conic section in descartes coordinate system
直角坐標(biāo)系下圓錐曲線的統(tǒng)一方程及變化動態(tài)初探 - The characteristic for a class inscribed triangle of conic section and it ' s application
圓錐曲線一類內(nèi)接三角形的性質(zhì)及其在作圖中的應(yīng)用 - Conic sections get their names because they take the shapes of the cross sections of a cone
我們稱這四種形狀為圓錐截線,是由于以不同方法切割圓錐體,便可以得到這些形狀。 - This paper , which aims at the developing strategy of express service , researching and analyzing chinese and foreign express corporations current situation , forecasts the demand of chinese express market in fifteen years with conic section model on the base of statistics
本文立足于快遞業(yè)的發(fā)展戰(zhàn)略,調(diào)查并分析了中外快遞公司在中國發(fā)展的現(xiàn)狀,根據(jù)實際的快遞業(yè)務(wù)數(shù)據(jù),利用二次曲線預(yù)測模型方法對未來15年內(nèi)的快遞市場需求量進行預(yù)測。 - The methodological beauty and the logical beauty of conic section reflect the internal rational beauty ; 3 . the beauty of mathematics in conic section reveals the new value in internal knowledge structure of textbooks . moreover , the application of the beauty of mathematics in high school math teaching is also discussed from the following four points of view : the pursuit of conciseness , the construction of symmetry , the utilization of unity and the discovery of uniqueness
首先,以圓錐曲線教學(xué)為案例來挖掘中學(xué)數(shù)學(xué)教學(xué)中的數(shù)學(xué)美,具體從三個層次探討圓錐曲線語言之美,是數(shù)學(xué)美的外在形式美具體展現(xiàn);圓錐曲線方法美、邏輯美,是深層次數(shù)學(xué)美的內(nèi)在理性美的反映;在圓錐曲線的教學(xué)過程中,利用其數(shù)學(xué)美處理教材,揭示內(nèi)在知識結(jié)構(gòu)的新價值;其次,提出數(shù)學(xué)美在中學(xué)數(shù)學(xué)學(xué)習(xí)中的具體案例運用,并具體從追求簡潔性、構(gòu)造對稱性、利用統(tǒng)一性和發(fā)現(xiàn)奇異性四個方面來舉例探討。 - The basis of dynamics and simulation includes the iterative flyout angle algorithm to the solutions to lambert problem and battin ' s universal conic section state extrapolate method . then spacecraft ' s orbit roots , maneuver impulse and maneuver time are discussed as the following four part : first of all , the chaser ' s one orbit roots is selected as a variable to simulate its influence to the large scale orbital maneuver . the research reveals fact that the orbit roots both of chaser and target should be close to each other to achieve better maneuver and rendezvous " ability , moreover , the best orbit maneuver and rendezvous occurs when both chaser and target ' s initial phase angle are equal
為了研究了交會機動中追蹤器和目標(biāo)器的軌道根數(shù)、機動時限和機動能耗等因素對交會機動的影響,仿真和分析分為以下四個部分:首先,研究了追蹤器軌道單個參數(shù)為變量情況下兩航天器大范圍交會機動問題,研究表明,追蹤器的變化參量與目標(biāo)器相應(yīng)的參量在接近的情況下可以獲得良好的交會機動特性,而對于兩航天器軌道共面的情況下,初始相位角相等時則獲得最佳的機動效果。